
The Need for Speed 1

In collaboration with:

Speed matters on
the mobile web, but
perception of speed is
just as important.

Mustafa Kurtuldu & Lionel Mora
Whether you’re a web developer, web designer or web marketer, you probably care about the
end user of your product more than anything else. If you don’t, well maybe we need another
eBook for that!

When we look at internet users today, there is one thing that is new and striking: their level
of expectations. Since mobile has become the dominant way to view the web, users access
content and services on the go, and expect to be able to do that with their smartphone,
anywhere, anytime. They want this to happen fast: load time is now rated highest and most
requested criteria in what users expect from a site. In addition to this, speed can have a
massive impact on businesses, knowing that 53% of mobile site visits are abandoned if
pages take longer than 3 seconds to load.

In this context it becomes very clear that pretty isn’t enough. If you’re building websites,
and particularly mobile websites, you need to make sure they are fast as well. But, speed
itself isn’t the only thing that matters, how we as human beings perceive speed and reaction
times of a website is of utmost importance. This is at the core of what this eBook will cover,
exploring how speed perception impacts user behaviour on your website, as well as sharing
tips, tricks and techniques to better aid you in crafting highly performant websites that
appeal to your audience.

F O R E W O R D BY

http://www.awwwards.com/
http://www.awwwards.com

More Mobile
Performance
Optimization
Tips

AMP
Mobile Excellence
Guideline
PWA CheckList

Links &
Resources

Perceived Performance
Animation
Optimization
Tools

The Need
for Speed

Mobile Browsing In
Context
How Important Is Speed
For Users?
Is Speed Fluid?
Outcomes Of Speed

Improving
the Perception
of Speed

Perception Of Speed
Interface Response Times
First Meaningful Paint
And Time To Interactive

Put The User In Active
Mode
Smooth And Optimized
Animations
Animation Optimization

Designing
for Mobile
Performance

Content Strategy

Borrowing Performance
Ideas From Native Apps

Optimize And Prioritize
CSS And Scripts

Optimize And Prioritize
Css And Scripts

1.1

1.2

1.3
1.4

1—

3—

4—

5—
2—

3.1

3.2

3.3

3.4

4.1
4.2

4.3

5.1
5.2
5.3
5.4

2.1
2.2
2.3

2.4

2.5

2.6

I N D E X

Is some new research carried out by Google, based on a survey which studies the relation
between real and perceived performance by users. The study reaches a series of

conclusions which will prove very useful when it comes to optimising mobile sites.

C H A P T E R 1

5

The Need for Speed

1

The Need for Speed 6

Mobile
Browsing
in Context

Mobile web browsing mainly happens in the home by people
that are relaxed and calm, in this environment page load
speeds are measured as being faster. This is probably due to
that fact that Wi-Fi is prevalent and the user feels comfortable
and less anxious about the time it takes to attain the desired
information.

74%
Rush

26%
Relaxed

1.1

STATE OF MIND

LOCATION

82% At home
8% Workplace
7% Travelling
3% Elsewhere

1

The Need for Speed 7

LOAD TIMES

1 Sec or less +1 to 4 Secs 4 Secs or more

At Home Work Out & About

Mobile web browsing mainly happens in the home by people
that are relaxed and calm, in this environment page load
speeds are measured as being faster. This is probably

Speed
Matters!
53% of mobile site
visits are abandoned
if pages take longer
than 3 seconds to
load.

Even with fast loading sites (less than 4 seconds) 29% of people
still don’t actually perceive this as fast. Users have become
demanding and building better sites must be a priority.

PERCEIVE AS FAST

29%

The Need for Speed 8

At a conceptual level, people want pages to load quickly - speed
is important and is rated the highest in the UX hierarchy, this is
not surprising as nothing can happen until the page is loaded
(or at least assumed to be loaded).

In general the real downloading speed is quite fast. The data
collected in the study shows that 7 out of 10 sites loaded in less
than 4 seconds and around 33% load in less than 1 second. In
respect to the perception of the users, in general, they perceive
the speed of the download as quite fast with figures very similar
to the real measured speed.

However, within the users whose perceptions were different,
there are noticeable discrepancies. For some, the perceived
speed was quicker than the actual speed, and for others the
perceived speed was much slower than the actual speed. This
study aims to uncover the external factors that can affect this
perception.

How
Important
is speed for
Users?

1.2

UX HIERARCHY

The speed it takes to load a page

How easy it is to find what I’m looking for

How well the site fits my screen

How simple the site is to use

How attractive the site looks

75%

66%

61%

58%

24%

9

So what’s going on?
Why is there this lack of correlation and what factors could have caused it?

EXTERNAL FACTORS THAT AFFECT PERCEIVED SPEED

Effective
use

Fully loaded / Start using

Age

Younger / Older

State
of mind

Anxious / Calm

Place
of activity

On the move / Stationary

The Need for Speed 10

We explored what might create a distortion between perceived
speed and the reality, by considering four key areas: Effective
Use of the Site, User Profile, State of Mind and User Situation.

Effective use of the site – We found that some web visits where
actual speed was slow but felt to be fast, tended to be retail
sites. We know that long scroll sites (such as used by retailers)
are designed to populate the page ‘above the fold’ giving the
impression that the page is complete, even though loading is
still ongoing ‘below the fold’. We hypothesise that this could
explain some of the distortion between the reality and the
perception, the difference between the time after which a site
can effectively be used, and the time that it takes to fully load.
This is a prime example of design thought out to optimize the
perception of performance, often used in an effective way to
present the information on the main retail sites.

The user profile – When comparing profiles of mobile web
users we found that the younger audience (18-24 yr. olds)
tended to be more demanding of load times whilst their older
counterparts were more relaxed and perceived speed as being
fast, whether true or not.

Is Speed
Fluid?

% perceived website / web page to have loaded relatively fast

1.3

YOUNGER USERS ARE MORE DEMANDING

50%
18-24

age
25-34

age

71%
35-44

age

73%

1

The Need for Speed 11

State of mind – When users are calm and relaxed, speed gets
faster, or at least it is perceived as such. On the other hand,
when users are feeling rushed or anxious, the perceived speed
slows down.

Situation – In a similar vein, web visits that are made ‘on the
move’ are also less likely to be perceived as fast (even though
they are), suggesting that when we are not at home and need
the information ASAP, things feel slower.

STATE OF MIND IMPACT ON PERCEIVED SPEED

ON THE MOVE THINGS FEEL SLOWER

Anxious

Rushed

Calm

Relaxed

42%

44% 79%

79%

% perceived website / web page to have loaded relatively fast

% perceived website / web page to have loaded relatively fast

(relatively)

(relatively)

(relatively)

(relatively)

Speed
is Fluid!
Although actual time
doesn’t register that
strongly, the external
factors outlined on
the left can in fact
influence and distort
user’s.

Sat down On the move

The Need for Speed 12

Positive perceptions of speed can have a positive impact on
how people feel about the visit outcome, future visit behaviour,
and the the brand as a whole.

Achieved Goals – When perceptions of speed were thought to
be fast, a higher percentage of users reported that goals were
achieved. Of course, we can’t unpick cause and effect here
and it could be the case that when goals are achieved, as an
afterthought users then perceive speed to have been faster. It
remains though, a virtuous circle, with an intrinsic link between
perceived speed and goal achievement.

Return visits – Users who sensed page load times as being
faster were significantly more likely to predict they would return
to the website again at 95%, on the other hand, a smaller figure
of 62% of users predicted they would return to a site that was
perceived as loading slowly.

Brand NPS - Net Promoter Score (a management tool used to
gauge the loyalty of a firm’s customer relationships) We also
saw a major uplift in NPS where speed perceptions were ‘fast’.
We can use this as an indicator that the immediate browsing
experience and sense of speed can offer positive results for
the brand. How sustained that will be, we can’t say, but some
residual positivity would be expected.

Outcomes
of Speed

1.4

13

Percieved speed = Results!
Percieved speed drives goal achievement, revisits and improved brand image

C H A P T E R 2

14

Improve the
Perception of Speed

15Improve the Perception of Speed

As we have seen in the study, the perception of speed that the
user has, does not always correlate with the real dowloading
figures. In his talk “Speed Matters” (Awwwards Conference
LA 2017) Paul Bakaus described that on a conscious level, we
perceive a delay on loading which is 80 milliseconds more than
the reality, which can be added to a determinable list of mental
states, environmental factors and other contexts which can
affect the reality perceived.

“WE PERCEIVE A DELAY
ON LOADING WHICH IS 80
MILLISECONDS MORE THAN
THE REALITY.” PAUL BAKAUS

As we can see from this graph, the same user considers a long
waiting time acceptable in some circumstances, but under
other conditions a shorter waiting time actually causes them to
abandon the task immediately.

Perception
Of Speed

2.1

https://www.youtube.com/watch?v=g3P7Gy_2wOo&feature=youtu.be
https://www.youtube.com/watch?v=g3P7Gy_2wOo&feature=youtu.be

16

Interface
Response
Times

2.2
Obviously it’s not only the waiting time during loading that’s
important, but the time that the interface takes to respond
to each interaction with the user - which has also been
measured in our study. Less than 200ms is viewed as an
instant reaction and if it takes more than 8 seconds the task
is abandoned. But we must bear in mind that users have less
patience when they first enter a site than when they make
successive interactions within the same site. A recent study
by Google shows that 53% of users abandon a mobile site
that takes more than 3 seconds to load.

200 ms

1 s

5 s

8 s

Feels instant

Feels it is performing smoothly

Part of user Flow

Lose Attention

Improve the Perception of Speed

17

As we have seen in the Google study, many retail sites with
excessive loading times are perceived as fast because they use
a very common TIP, they prioritize the loading “above the fold”
so that the user can download the most relevant content and
interact quickly while the rest of the site is loading. In other words
a First Meaningful Paint is produced quickly and the loading of
the scripts necessary is prioritized so that the content functions.
It’s very important to understand these fundamental concepts in
order to improve the performance of our apps.

First Meaningful Paint
FMP is when there is something useful on the screen to engage
the user.

Time to interactive
This is when the browser finishes building the DOM and the
user can begin to interact with the application.

More Info
 ⚭ Leveraging the Performance Metrics that Most Affect User

Experience

 ⚭ Time to First Meaningful Paint

 ⚭ Measuring Perceived Performance

Tools
 Ϡ Paint Timing API

First
Meaningful
Paint and
Time to
Interactive

2.3

Improve the Perception of Speed

https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://docs.google.com/document/d/1BR94tJdZLsin5poeet0XoTW60M0SjvOJQttKT-JK8HI/view#
http://blog.catchpoint.com/2016/10/21/measuring-perceived-performance/
https://blog.chromium.org/2017/06/chrome-60-beta-paint-timing-api-css.html

18

Remove the 300-350ms
tap delay
Without doubt a way to start the interaction more quickly is to
remove this delay. For a long time mobile browsers used a 300-
350ms delay between touchend and click while they waited to
see if this was going to be a double-tap or not, since double-tap
was a gesture to zoom into text.

To remove the 300-350ms tap delay, all you need is the
following in the <head> of your page:

<meta name=”viewport” content=”width=device-

width”>

In new Chrome CSS rule “touch-action: manipulation” also
eliminates click delay. For Old browsers, FastClick by FT Labs
uses touch events to trigger clicks faster & remove the double-
tap gesture.

Improve the Perception of Speed

https://github.com/ftlabs/fastclick

19

We can identify two forms of waiting - passive and active.
In passive waiting the user simply watches a progress bar
loading without doing anything, in active waiting the user could
be interacting with a game or answering a little questionnaire
about their profile.

“PEOPLE IN PASSIVE WAITING
MODE OVERESTIMATE
WAITING TIMES BY 36%.” Put the User

in Active
Mode

2.4

Active Waiting in Loading
Put the user in a kind of “Active Mode” like playing mini-games
during loading, answering some questions about their user
profile, etc.

STAINED GLASS - PAINTING LOADING

Improve the Perception of Speed

https://www.awwwards.com/inspiration/5943a8dee1382324240d2505

20

Create Instant Interactions
Instant feedback from the interface makes the experience feel
fluid, generating the illusion of continuity. Microinteractions are
a good example which support the dynamism of an interface.
You can see some good examples in our collection
UI Animation and Microinteractions.

Tiny instant animations provide feedback and entertain the
user while the “real action” is pushed into the background on a
second thread.

Use the Right Loader
Use spinners for very short waiting times, they are probably
not necessary but they help to maintain continuity before
showing the new element. Use progress loading bars for
longer waiting times.

The way in which we show the data is also important. Instead
of showing the percentage of of data still to be loaded, it can
be more informative for the user to know the length of the
remaining waiting time.

TEXT EDITOR ANIMATION

LE CAFE NOIR STUDIO - SHOPPING CART

SPINNER
Short waiting times

PROGRESS BAR
Long waiting times

Improve the Perception of Speed

https://www.awwwards.com/awwwards/collections/animation/
https://www.awwwards.com/inspiration/58a6e758e138232c86608056
https://www.awwwards.com/inspiration/58ff06eae1382301ae0867f4

21

UX Patterns
To improve perception, time in passive wait must be minimized,
to do this we can use the UX patterns that Paul Bakaus
describes in his talk as well as improving the dynamism of our
animations and transitions.

Preemptive Start
A preemptive start is the realisation of the beginning of a task
before the user demands it. For example by showing the user a
small questionnaire the user is distracted while other assets are
loaded. Other examples are:

Loading Assets on Login Screen
Preload critical assets on the Login Screen. The process of
preloading is started by taking the users to the login screen.

Preload Assets on Rollover
When rolling over elements in the menu, the preload of the
assets from this sections starts.

Preload Content on Previous States
Preload critical content for the next screen when the users is in
previous states.

Multi-Step Forms
Preload assets while the user is on a multi-step form.

Improve the Perception of Speed

https://www.awwwards.com/paul-bakaus-from-google-the-illusion-of-speed-improving-the-perceived-speed-of-websites.html

22

way errors are handled is the key to maintaining all the benefits
for the user and not ruining the usability of the application. An
optimistic UI should communicate any possible errors to the
user in no more than 2 seconds.

Instagram Likes
In Instagram, when you like an image, the action appears
immediate to the user, but in reality it is stored in the database
at a later stage.

Upload File in a Second Thread
In this example the user uploads a heavy file to the server and
a message appears in the interface saying that the task is
“Processed” The task will actually be sent to a second thread
using technologies like Web Workers. Thus giving the sensation
of great efficiency and speed as well as allowing the user to
continue navigating. It’s not bad practice as long as the user is
informed of the state of the upload, alongside possible failures
and interruptions.

More info
 ⚭ Leveraging the Performance Metrics that Most Affect User

Experience

 ⚭ Time to First Meaningful Paint

 ⚭ Measuring Perceived Performance

Early Completion
In this case, the opposite as before, we partially show content
that is not yet complete, the most common example is video
streaming.

Progressive Images
A progressive image is created using compression algorithms
that load the image in successive states. The user can quickly
see a low resolution representation of the image that continues
downloading.

Placeholders or Low-res Blurred Images Like Medium
Low-resolution images are used to preload the high-res ones,
applying to them a blur filter to emulate a real progressive
image.

Optimistic UI
Optimistic design, which can sometimes be a dangerous
practice, is an interaction model where an incomplete task
is presented as complete. Between 1% and 3% of the clients’
requests get a server error so an optimistic UI model can really
create a smooth and interrupted experience for the user. The

Improve the Perception of Speed

https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://docs.google.com/document/d/1BR94tJdZLsin5poeet0XoTW60M0SjvOJQttKT-JK8HI/view#
http://blog.catchpoint.com/2016/10/21/measuring-perceived-performance/

23

The main rule in Web Animations is to maintain 60fps.
To get a smooth motion, each frame needs to be rendered in
less than 16ms. There are a lot of animation techniques that
aren’t directly related to performance, but if they help to create a
smoother and more fluid motion, they will surely help to improve
the perception of performance too.

Easing functions
Choosing the right “easing” is decisive to produce a smooth
animation that feels natural and pleasant. Easing Functions
are curves that describe the acceleration or deceleration of a
motion in a period of time.

1. Linear:
Linear motion describes a continuous acceleration. It
doesn’t feel natural.

2. Ease-in:
The animation begins slowly and accelerates

3. Ease-out:
It begins quickly and decelerates, it’s useful for initial inter-
actions when the user expects the quickest response time
possible.

4. Ease-in-out:
The animation is slower in the entrance and exit, it produc-
es a very fluid effect.

Smooth and
Optimized
Animations

2.5

Improve the Perception of Speed

https://developers.google.com/web/fundamentals/performance/rendering/

The Need for Speed 24

Ease-Out
Deceleration Curve

Ease-InOut
Smooth Motion

x

t

Linear
Constant Motion

Ease-In
Acceleration Curve

The Right Easing
Choose the right easing for fluid animation and a quick response

User
Input

Ease-Out
Requires Instant reaction,

Menus, Buttons

Display
Info

Ease-In
Prompt Windows

Short
Times

Ease-In / InOut
These curves are

perceived as too slow
in longer times

Motion
Duration

200 - 500 ms
For Bounce and Elastic

Effects, use 200 - 800 ms

FOR SMOOTH ANIMATIONSFOR USER INTERFACE

25

Choosing the Right Easing
1. Use Ease-out for UI elements

This type of animation starts quickly and then slows down,
which gives your animations a feeling of responsiveness
with a nice slowdown at the end.

2. Avoid Ease-in and Ease-in-out Animation with long
times

This can be too slow for the user.

3. For Fast Ease-out effects use Quintic Equations

4. Duration

Set the animation duration for Ease-outs and Ease-ins
around 200ms-500ms.

5. For Bounce or Elastic effects

800ms-1200ms. You need to allow more time for the elastic
bouncing part of the animation.

More info:
 ⚭ Choosing the right easing

 ⚭ The Basics of Easings

Tools:
 Ϡ http://cubic-bezier.com

 Ϡ Easing Functions

Improve the Perception of Speed

https://developers.google.com/web/fundamentals/design-and-ui/animations/choosing-the-right-easing
https://developers.google.com/web/fundamentals/design-and-ui/animations/the-basics-of-easing
http://cubic-bezier.com/
http://easings.net/

26

Animation
Optimization

2.6

Animation Performance
The following is very important because every interface
animation must be designed in terms of performance,
especially in mobile. When we produce an animation in CSS
or Javascript, depending on how the different properties are
rendered by the browser, the 60 fps can be optimized for the
fluidity of our animation. We recommend that you have a look
at this course by Paul Lewis and Cameron Pittman to better
understand how animations are rendered by the browser.

Improve the Perception of Speed

https://www.udacity.com/course/browser-rendering-optimization--ud860

27

Animate the correct properties
By Surma, Google Developer Advocate

Whenever using CSS Transitions or CSS Animations, try very hard
to only use the opacity and transform properties. All other CSS
properties (like width or top) are mostly very slow to animate and
will make your animation janky, especially on mobile devices.

CSS/JS Animation
Performance
CSS Animation
Use CSS for simple animations, transitions and to animate DOM
elements. Declarative animations are optimized by the browser.

1. Use Hardware Accelerated Safe Properties:
Opacity and Transform (Rotate,Translate, Scale)

2. Avoid animate styles that affect Layout:
Width, height, padding, margin.

3. Avoid animate styles that affect Paint:
Color, background, background-image, border.

Javascript Animation
Use Javascript for complex animations, animate sequences,
independent transformations, Canvas, CallBack functions,
animate paths.

1. Use RequestAnimationFrame
2. Avoid setTimeOut, setInterval
3. Avoid changing inline styles on every frame
4. Decouple events from animations
5. Avoid reflow and repaint loops
6. Use GPU acceleration with Matrix3D Transformations

More info:
 ⚭ MicroTip: Flip Animations

 ⚭ Rendering Performance

 ⚭ CSS GPU Animation: Doing It Right

 ⚭ Browser Rendering Optimization Free Curse - Udacity

Improve the Perception of Speed

https://www.youtube.com/watch?v=Rj1aLTnxLQ4
https://developers.google.com/web/fundamentals/performance/rendering/
https://www.smashingmagazine.com/2016/12/gpu-animation-doing-it-right/
https://www.udacity.com/course/browser-rendering-optimization--ud860

C H A P T E R 3

28

Designing for Mobile
Performance

29Designing for Mobile Performance

Traditionally we tend to perceive performance as a task of
compression of assets, optimizing server architecture and DB,
cache etc, things that, in general, escape the understanding of a
designer.

However, the biggest part of the task of optimization begins
in the analysis phase of a project. Establishing viable goals,
designing the contents, understanding the user path and the
way in which the users interact with the app.browser to retrieve
files needed for the site)

“PERFORMANCE IS AN
ESSENTIAL DESIGN
FEATURE.” BRAD FROST

In this first phase, a very useful TIP is to always create a
Performance Budget which imposes a series of limitations
which we can use from the start to avoid an excess of
unnecessary resources.

Content
Strategy

3.1

30

The Performance Budget
This is composed of a series of limitations which we establish
depending on the analysis of our target, their devices and
possible access conditions to our site in terms of connectivity.
The Performance Budget is composed of the following data.

Page weight, the site size in kilobytes including all assets (HTML
documents, CSS images, styles, scripts, videos, fonts, etc.)

Number of HTTP requests (a request made by the user’s
browser to retrieve files needed for the site)

Sample:
Overall 400 kb /page
80% images
15 request
7% Fonts
Max 7 secs load time over 3G connections

Tools
 Ϡ Performance Budget Builder

 Ϡ Performance Budget Calculator

More Info
 ⚭ Setting a Performance Budget

 ⚭ Performance As Design

 ⚭ Design Through the Lens of Performance

OVERALL

IMAGES

CSS

JS

TOTAL ASSETS 400 KB

Designing for Mobile Performance

http://bradfrost.com/blog/post/performance-budget-builder/
http://www.performancebudget.io/
http://www.performancebudget.io/
http://www.performancebudget.io/
https://timkadlec.com/2013/01/setting-a-performance-budget/
http://bradfrost.com/blog/post/performance-as-design/
https://www.youtube.com/watch?v=wBcPEZf0hwI

31

Image
Strategy

3.2

As we have just tested, a very high percentage, around 70% of
a site is composed of images. A big part of the optimization
process centres on compression, adapting and managing
loading images, but there is a lot of work that must be done
beforehand in the area of content design, that is to decide
carefully what graphic material is really useful or significant for
the brand.

On the next page, a TIP that takes us to the content strategy in
relation to images.

Designing for Mobile Performance

32

Decorative image are the opposite of the branding images,
they merely give a feeling and emotion but are not critical to a
design. So when working with a developer consider that these
could be replaced with block colours or an alternative design.

Informative images convey a message to the user, perhaps
sponsorship of a site or clients and partners that you work with.
These are important also but may not be as critical as your own
branding and priority images so provide an alternative design
that would show the developer an alternative with text or an
image / logo that can be repeated and cached by the browser.

More Info
 ⚭ WomenTechmakers.com

Designing an Image
Strategy
According to a study by httparchive, a majority of data that
makes up the weight of a website is images.

Ewa Gasperowicz developed a 4 point plan for images when
designing a site that looks at images according to function;

1. Navigation and action

2. Branding and priority

3. Decorative

4. Informative

Navigation and action images are very important and always
need to be present, so circling them in your design shows that
they need to be present at all times.

Branding and priority images are images that effect the
experience in a way that relates the product to the user. If your
brand has a distinct look, images that fulfil that look are quite
important so they may need to also be present at all times.

Designing for Mobile Performance

https://www.youtube.com/watch?v=fyi7auD5MzU
http://httparchive.org/interesting.php#bytesperpage

33

Borrowing
Performance
Ideas from
Native Apps

3.3 Use Progress Indicators in
Standalone Mode
By Ewa Gasperowicz, Developer Programs Engineer

“USE PROGRESS BARS AND
WIDGETS WHEN RUNNING THE
APP IN AN APP SHELL OR IN
STANDALONE MODE.”

When an app is launched in the standalone mode (e.g. from
a link in a homescreen), it does not show the default browser
UI, like the URL bar or the menu button. This includes progress
bars - if the user performs an action that causes the app to
make a (sometimes lengthy) request to the server, there is no
default way for them to know that the request was sent and
that the app is waiting for a reply. The app might seem “frozen”
and it could discourage the user from further interaction. You
need to proactively include progress indicators to keep the user
informed as to what is happening.

Designing for Mobile Performance

34

Never Block Page
Transitions on the Network
and Provide Continuity
By Owen Campbell-Moore

When a user taps a button or link in a web app, especially a
server rendered web app, they are often made to wait staring
at the current screen before suddenly jumping to a whole new
screen of content.

Aim to provide the perception that the whole “app” is stored
locally on the phone and that only the content is being
dynamically loaded, use skeleton screens as placeholders as
content is loading, but be sure to remember to reuse any data
you already have from the previous page (e.g. the article title,
thumbnails etc) to get the illusion of continuity and create a
fluid transition into the new content.

Prevent Content Jumping
as the Page Loads
By Owen Campbell-Moore

All img tags on a page should proactively include the
dimensions of the image. This allows the browser to layout the
screen correctly even before the image is loaded.

If dimensions aren’t specified on the tag then content will jump
when the image is downloaded, which makes for a poor user
experience.

Tip: show a placeholder where the image will go, such as a grey
square, or a blurred thumbnail of the image if it is available on
the client due to being shown on a previous screen. Fading in
the image when it is downloaded is also a nice touch of polish.

More Info
 ⚭ Designing Great UIs for Progressive Web Apps

 ⚭ Creating UX that “Just Feels Right” with Progressive Web
Apps, Google I/O ‘17

Designing for Mobile Performance

https://medium.com/@owencm/designing-great-uis-for-progressive-web-apps-dd38c1d20f7
https://www.youtube.com/watch?v=mmq-KVeO-uU
https://www.youtube.com/watch?v=mmq-KVeO-uU

35

Optimize
& Prioritize
CSS / Scripts

3.4 Deliver the minimal code to
make a page useful upfront
By Addy Osmani, Engineering Manager at Google

Most websites ship all of the JavaScript a website needs
upfront. Think of this as your framework, all your plugins and
widgets which can be incredibly costly to load; not only are you
shipping 100s of KBs of script to the user, but the major hidden
cost is how long this JavaScript takes to be parsed, compiled
and executed by the browser.

On the powerful desktop machines we build sites on, this
JavaScript can boot-up relatively quickly. On underpowered
mobile devices however, it can often take 4-5 times as long for
JavaScript to boot-up. This can leave a user waiting a long time
before any UI can be interacted with. In our studies, anywhere
up to 19 seconds.

To work around this problem, consider splitting your JavaScript
up and only serving down the minimal code needed to make the
current page useful to the user. Non-critical code can be lazily
loaded in or added on the routes or pages that absolutely need
it. This can shave seconds off your load time, allowing your user
to interact with your experience more quickly.

Designing for Mobile Performance

36

Preload Critical Resources
By Addy Osmani, Engineering Manager at Google

Browsers like Chrome load resources like JavaScript, Web Fonts
and images with different priorities. We usually make a best
guess of what we think you’ll need first. As a web page author
however, you know more about the assets that are critical to
load early on in your page than we do.

“AS A WEB PAGE AUTHOR
HOWEVER, YOU KNOW MORE
ABOUT THE ASSETS THAT ARE
CRITICAL TO LOAD EARLY ON IN
YOUR PAGE THAN WE DO.”

To improve the load performance of specific resources, you can
take advantage of <link rel=”preload”> to preload assets
that might be discovered late by a browser that are important
to load sooner than others. Examples might be Web Fonts that
are critical for your main content, JavaScript bundles critical for
a page to get interactive or images that might be a large part of
your user experience.

<link rel=”preload”> is supported in Chrome and Blink-
based browsers like Opera.

Inline Critical CSS
By Prateek Bhatnagar, UX Engineer

While serving markup from server, try to put the CSS that you
expect the current page to use (aka Critical CSS) inside a style
tag in the header section. This allows the browser to paint the
page without making any network call and thus is super quick.
This boosts the first paint time of your app. With this technique
while the browser renders the DOM for you, it already has the
respective styling for it.

If you sent these styles in a css file instead, the browser will
make a network call and wait for it before it can apply this CSS
to your page.

“YOU CAN INLINE THE CRITICAL
CSS INSIDE THE STYLE TAG
AND DEFER LOAD/LAZY LOAD
REST OF YOUR APP’S CSS IN A
SEPARATE FILE.”

Designing for Mobile Performance

37

Eliminate render-blocking
resources in above-the-fold
content
By Luciano Borromei, UX Engineer at Ingamana

The term “above-the-fold” is derived from the print media
industry and describes the upper half of the front page of a
newspaper, the one that is visible with the paper folded.

In web development it refers to the portion of a webpage that is
visible without further user interaction like scrolling.

Since nowadays screen sizes varies drastically, there is no
fixed definition for the number of pixels that determines the
fold: it just make reference to the initially visible contents of the
viewport size.

Loading contents that are not directly involved in the rendering
of this prioritized visible content causes a delay that is proved
impacts directly in conversion rates and in the user’s speed
perception of the website.

Optimization Tips:

1. Load the critical above-the-fold content of your page
first.

2. Defer or asynchronously load ATF blocking resources,
or inline the critical portions of them.

3. Reduce the amount of data required to render
your page by minifying resources and enabling
compression for every HTTP request.

Once this initial part of the page is loaded you can instruct the
browser to load the rest of the CSS, JS, media and other assets
required to render the complete page

Designing for Mobile Performance

38

Use Passive Event Listeners

By Prateek Bhatnagar, UX Engineer

When you want to add a touch event listener to your page and
don’t want to use preventDefault on it, make sure you add
Passive event listeners. This helps browsers know that you have
no intent of calling preventDefault. If not done like so, browsers
will wait for the added listeners to finish before they can scroll
the page and hence your users might feel a jank while scrolling
your web page.

“LOOKOUT IN YOUR DEV-
TOOLS CONSOLE FOR NON
PASSIVE EVENT LISTENERS,
DEV-TOOLS WARN ABOUT
SUCH SCROLL PERFORMANCE
BOTTLENECKS.”

Designing for Mobile Performance

C H A P T E R 4

39

More Performance
Optimization TIPS

40More Performance Optimization TIPS

The Accelerated Mobile Pages (AMP) provide a new standard,
built on top of existing web technologies, to enable blazing-fast
page rendering and content delivery.

1. Speed - Pages load instantly which means more
engagement.

2. Openness - It works everywhere, cross platform.
3. Control - It’s just HTML - you control how your content

looks and feels.

The way it works is by executing all AMP JavaScript
asynchronously, preventing JS files from blocking the HTML
page from loading. It then loads the layout of the page without
waiting for any resources, such as images, to download. There
are many more features AMP uses to beef up the speed of a
HTML page which you can learn about here.

Some successful examples of executed AMP sites include
The Washington Post, which saw a 23% increase in returning
users when they switched to a AMP. They also saw a 88%
improvement in load time for the AMP site over their traditional
mobile web experience.

Also news site Mynet increased the speed of their mobile site by
4X, increasing revenue by 25% with AMP-based PWA. They also
saw a 43% longer average time on site and reduction of bounce
rate by 24%.

You can learn more about AMP on our tutorials page here and
also read success stories with AMP at Web Fundamentals.

Accelerated
Mobile
Pages

4.1

https://www.ampproject.org/learn/about-how/
https://www.ampproject.org/learn/about-how/
https://developers.google.com/web/showcase/2017/mynet
https://www.ampproject.org/docs/tutorials/create
https://developers.google.com/web/showcase/

41More Performance Optimization TIPS

Report Generation and Award Process
Over the last 9 years, Awwwards has been inspiring the web
development and web design industry by evaluating more
than 40,000 websites and awarding prizes for exceptional
work. However, in a time where mobile has started to play a
dominant role in how people access the web, it is fundamental
that the same web developers and web designers build
websites that meet users’ expectations. Despite the explosion
of mobile usage, the standards of performance and usability
of existing mobile sites remain poor and far from meeting
users’ expectations. The average page load time is currently
22s globally, which represents a massive missed opportunity
for many companies, bearing in mind the impact of speed on
conversion and bounce rates. To push the industry forward,
Awwwards and Google are joining their areas of expertise to
create a Mobile Seal on awwwards.com and a Mobile Award to
evaluate the mobile versions of submitted sites.

“AWWWARDS GOOGLE
ANNOUNCE THE NEW
MOBILE EXCELLENCE BADGE
AND AWARD TO INSPIRE
DEVELOPERS AND DESIGNERS
TO BUILD BETTER MOBILE
WEBSITES”

Mobile
Excellence
Guidelines

4.2

42

Evaluation system for the Mobile
Excellence Award
The most interesting part of the project is defining the Mobile
Guidelines based on Google’s criteria, which allow us to delve
further into and improve our understanding of what the Tools
that we use to evaluate the performance of our mobile sites do,
as well as what are the essential factors for optimization.

The Mobile Excellence evaluation process consists of the
following 4 categories:

• Mobile Friendliness
• Speed / Performance
• Best Practices / PWA
• Usability

A manual evaluation is carried out by a team of experts,
in which usability aspects such as Usability, Legibility,
Discoverability (that are difficult to quantify with an automatic
system), are evaluated. After this process a report will be
generated detailing the results of the evaluation. The Mobile
Excellence Award will be awarded daily and every year projects
of note in terms of optimization will be used as examples to
inspire the community

More Performance Optimization TIPS

https://docs.google.com/document/d/1RIz5D8K38u1NuZpPlrHyzrZbZ3klcIxy3x-A2F0O41g/edit#
https://docs.google.com/document/d/1RIz5D8K38u1NuZpPlrHyzrZbZ3klcIxy3x-A2F0O41g/edit#
https://www.awwwards.com/mobile-sites/happymeter

43More Performance Optimization TIPS

44

A Progressive Web App (PWA) is a responsive web app that
uses modern web capabilities to deliver an app-like experience
to users. The look and feel of a PWA is very similar to a native
mobile app, in terms of reaction times, animation, transitions,
etc.

Checklist before you begin
migrating to PWA
1. Implement HTTPS: Just do it.

2. Enable browser caching: Set up correct response headers.

3. Avoid blocking JavaScript: Move script elements to the
bottom of the page and/or add async or defer attributes.

4. Remove links to unused JavaScript libraries: Don’t link to
JavaScript you don’t need.

5. Avoid including JavaScript libraries more than once: Check
that you don’t link to both minified and ‘full-fat’ versions, or
multiple versions of the same library.

6. Remove unused CSS and unused JavaScript: Pay down
technical debt!

7. Reduce JavaScript dependencies: With simple refactoring,
you might not need to use JavaScript libraries.

8. Use the right image format: JPEG or WebP for photos, SVG
for PNG for logos or icons.

Progressive
Web Apps

4.3

More Performance Optimization TIPS

https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/speed/docs/insights/LeverageBrowserCaching
http://peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/
https://umaar.com/dev-tips/121-css-coverage/
https://developers.google.com/web/updates/2017/04/devtools-release-notes
https://developers.google.com/web/fundamentals/design-and-ui/responsive/images#choose_the_right_format

45

9. Compress images: Check for images that should be saved
with greater compression: anything over about 10KB for
small images, 100KB for large images. Resave then optimise
with tools such as ImageOptim. Hero images are the most
likely offenders.

10. Size images correctly: Check for images with pixel
dimensions too large for display size. Resave at appropriate
sizes.

11. Optimise video resolution: If you use video, check that
resolution is no larger than required for the display size. Re-
encode as necessary.

12. Include a meta viewport tag: <meta name=”viewport”
content=”width=device-width,minimum-
scale=1.0”>

1. HTTPS
Every site should deliver all assets over HTTPS.

Why
 🜸 HTTPS is fundamental for security, content integrity and

authentication.

 🜸 Many APIs won’t work without it.

Check
 🜸 Use the Chrome DevTools Security panel to check that all

assets for your site are delivered via HTTPS.

Fix
 🜸 Use a simple service like CloudFlare (though, strictly

speaking, this does not implement end-to-end encryption).

 🜸 Purchase a security certificate (or get a free one) and enable
HTTPS on your server.

Learn
 ⚭ Why HTTPS matters

 ⚭ Enabling HTTPS on Your Servers

 ⚭ Secure your site with HTTPS

2. Enable browser caching
All cacheable resources should be delivered with the
appropriate Cache-Control headers.

Why
 🜸 Cache-Control headers enable browsers to load previously

downloaded resources from the local cache rather than from
the network.

 🜸 Requests to the network use battery, incur data cost and add
to server load.

 🜸 Responses from the local cache are much faster and more
reliable than from the network.

More Performance Optimization TIPS

https://imageoptim.com/
https://developers.google.com/web/fundamentals/media/video#size_videos_correctly
https://support.google.com/webmasters/answer/6073543?hl=en
https://support.google.com/webmasters/answer/6073543?hl=en
https://developers.google.com/web/tools/chrome-devtools/security
https://CloudFlare.com
https://letsencrypt.org/
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/enable-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/enable-https
https://support.google.com/webmasters/answer/6073543?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching#cache-control

46

Check
 🜸 Run PageSpeed Insights for your site or check response

headers from the Chrome DevTools network panel.

Fix
 🜸 Ensure your server sets an expiry date or a maximum age in

HTTP headers.

Learn
 ⚭ Leverage browser caching

3. Avoid blocking JavaScript
Put all script elements at the bottom of the page and/or add a
defer or async attribute.

Why
When the browser encounters a script element without a defer
or async attribute, it has to pause page rendering to parse and
execute JavaScript.

 🜸 Blocking JavaScript is the main reason for slow load times
for many sites.

 🜸 53% of users abandon sites that take longer than three
seconds to load.

Check
 🜸 Run PageSpeed Insights for your site.

Fix
 🜸 Add an async or defer attribute to every script element and/

or move all script elements to the bottom of the page, just
before the closing </body> tag.

Learn
 ⚭ Remove Render-Blocking JavaScript

4. Remove links to unused JavaScript
libraries
Remove links to JavaScript libraries you don’t use.

Why
 🜸 Every JavaScript file you include incurs data cost and a

resource request.

 🜸 All JavaScript must be parsed and executed — even if it’s not
used elsewhere.

Check
 🜸 Use the Chrome DevTools network panel to check for for

redundant library downloads.

Fix
 🜸 Remove links to JavaScript you don’t use, or code that

programmatically loads unused scripts.

Learn
 ⚭ Analyze Runtime Performance

More Performance Optimization TIPS

https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference#requests
https://developers.google.com/speed/docs/insights/LeverageBrowserCaching
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/
https://developers.google.com/speed/pagespeed/insights/
http://peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/
https://developers.google.com/speed/docs/insights/BlockingJS
https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://developers.google.com/web/tools/chrome-devtools/rendering-tools/

47

5. Don’t include JavaScript libraries more
than once
Make sure not to link to both minified and unminified versions
of JavaScript libraries, or both new and old library versions.

Why
 🜸 A surprising number of sites link to the same JavaScript

library more than once.

 🜸 Linking to multiple versions of the same library can cause
unexpected behaviour.

 🜸 Every resource request adds to data cost, power usage and
server load.

 🜸 All JavaScript must be parsed and executed, whether or not
it’s used, thereby adding to page load time.

Check
 🜸 Use the Chrome DevTools network panel to check for

JavaScript resources.

Fix
 🜸 Remove links to redundant old or unminified versions of

JavaScript files.

Learn
 ⚭ Analyze Runtime Performance

6. Remove unused code
Remove CSS or JavaScript that’s no longer used by your site.

Why
 🜸 CSS and JavaScript code incurs a download and parsing

cost even if it’s not used.

 🜸 Unused code adds to project complexity and maintenance
cost.

Check
 🜸 Check for unused CSS: use the uncss Node module, record

CSS coverage from Chrome DevTools, or use the Chrome
DevTools Audits panel (or Legacy Audits from Chrome 60).

 🜸 Check for unused JavaScript: used the Chrome DevTools
coverage tool.

Fix
 🜸 Remove unused code — but be careful to avoid unwanted

side effects!

Learn
 ⚭ CSS and JS code coverage

More Performance Optimization TIPS

https://developers.google.com/web/tools/chrome-devtools/rendering-tools/
https://github.com/giakki/uncss
https://umaar.com/dev-tips/121-css-coverage/
https://umaar.com/dev-tips/121-css-coverage/
https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage
https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage

48

7. Reduce JavaScript dependencies
With simple refactoring you may be able to remove
dependencies on one or more JavaScript libraries.

Why
 🜸 You may be loading JavaScript libraries that you don’t really

need, such as outdated polyfills, utilities with minimal usage,
or unused UX frameworks.

 🜸 Every resource request adds to code complexity, data cost,
power usage and server load.

 🜸 All JavaScript must be parsed and executed, whether or not
it’s used, thereby adding to page load time.

Check
 🜸 Use Chrome DevTools to check for JavaScript library

downloads.

 🜸 Check caniuse.com to find out if polyfills are necessary for
your target platforms.

Fix
 🜸 Where possible, refactor code to remove dependencies, then

remove code or links that load unnecessary libraries.

Learn
 ⚭ Analyze Runtime Performance

8. Use the right image formats
Use the appropriate format for images, depending on their
content: WebP or JPEG, SVG or PNG.

Why
 🜸 Incorrect use of image formats is a major cause of data bloat.

 🜸 In terms of file size, WebP and JPEG are much more efficient
for photographic images than PNG.

 🜸 SVGs are inherently responsive (they can shrink or expand to fit)
and far more efficient for vector graphics than other formats.

 🜸 Inline SVGs can significantly reduce file requests.

Check
 🜸 Use browser tools to check image formats.

 🜸 Look for large image files in the Network panel of your
browser tools.

 🜸 Check for PNG images such as icons or logos that could be
replaced with inline SVGs.

Fix
 🜸 Photos should be WebP or JPEG; vector images such as logos

or icons should be SVG or PNG.

 🜸 If you use PNG for transparency, try WebP instead. JPEG with
an opaque background works well enough in many cases.

 🜸 Try using PNG-8 instead of PNG-24.

 🜸 Remove redundant images! Avoid images wherever possible.

More Performance Optimization TIPS

https://caniuse.com/
https://developers.google.com/web/tools/chrome-devtools/rendering-tools/
https://developers.google.com/web/fundamentals/design-and-ui/responsive/content#viewport

49

Learn
 ⚭ Image Optimization

 ⚭ Udacity Responsive Images course (it’s free!)

9. Compress images
Compress images as much as possible. Pay particular attention
to ‘hero’ images.

Why
 🜸 Images constitute by far the most weight and most requests

for most web pages.

 🜸 For many people high data cost is often a greater barrier to
access than poor connectivity, especially for users on capped
data plans.

Check
 🜸 From the Network panel of your browser tools, check for the

largest image file sizes.

 🜸 As a rule of thumb, large images over 100KB and small
images over 10KB can probably be resaved with higher
compression without visible quality degradation.

Fix
 🜸 Use the highest possible compression value (lowest quality)

and work up until you get an acceptable result.

 🜸 Use your browser tools to check for heavy image files, and

individually optimise static images such as banners and
backgrounds.

 🜸 For dynamically saved images, try increasing compression
(reducing quality) with your workflow tools.

 🜸 Optimise images with lossless tools such as ImageOptim.

 🜸 Optimise SVGs with a tool such as as SVGOMG.

Learn
 ⚭ Image Optimization

 ⚭ Udacity Responsive Images course (it’s free!)

10. Size images correctly
Save images using pixel dimensions appropriate for the display
size and pixel density.

Why
 🜸 Saving images with minimum possible pixel size can

significantly reduce data cost.

 🜸 Small increases in pixel dimensions result in big increases in
memory usage. With images on mobile — especially on low-
spec devices — memory can become the new bottleneck.

Check
 🜸 From your browser tools, check the natural (saved) size of

an image compared with the display size. If you’re using
a 1x display, such as most desktop monitors, these two

More Performance Optimization TIPS

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/image-optimization
https://www.udacity.com/course/responsive-images--ud882
http://httparchive.org/interesting.php#bytesperpage
http://httparchive.org/trends.php#bytesImg&reqImg
https://imageoptim.com/
https://jakearchibald.github.io/svgomg/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/image-optimization
https://www.udacity.com/course/responsive-images--ud882
https://timkadlec.com/2013/11/why-we-need-responsive-images-part-deux/

50

sizes should match. For a 2x display, such as on high-spec
phone or laptop, the image dimensions should be double the
display size — and so on.

 🜸 If you inspect an img element from the browser console,
you can compare naturalWidth and naturalHeight properties
(saved size) with clientWidth and clientHeight (displayed
size).

 🜸 Avoid stretching or squashing images. You can check this
with the Chrome Image Checker extension.

Fix
 🜸 Resave individual images using the correct dimensions.

 🜸 Consider using responsive images. The widely supported
srcset attribute makes this extremely simple:

<img src=”small.jpg” srcset=”medium.jpg 1000w,
large.jpg 2000w” alt=”My image”>

Learn
 ⚭ Image Optimization

 ⚭ Udacity Responsive Images course.

11. Use the right video resolution
Ensure that encoded video frame dimensions are no larger than
necessary for the display size.

Why
 🜸 There is no point in delivering video at a higher resolution

than the largest size it will be displayed on a web page.

 🜸 A video with a resolution even slightly larger than required
will result in a significant number of wasted bytes, adding to
data cost and increasing the likelihood of video buffering.

Check
 🜸 If a video element from the browser console, and

compare videoWidth and videoHeight properties with
clientWidth and clientHeight.

 🜸 Don’t squash or stretch videos: check for videos with aspect
ratio different from the video.

Fix
 🜸 Deliver videos using the correct resolution.

 🜸 If necessary use media queries or adaptive streaming
techniques to deliver the correct resolution

Learn
 ⚭ developers.google.com/web/media

 ⚭ Video on mobile

More Performance Optimization TIPS

https://chrome.google.com/webstore/detail/image-checker/bacnicogfgpigmmenfiplfiofpkocpii?hl=en-GB
https://css-tricks.com/responsive-images-youre-just-changing-resolutions-use-srcset/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/image-optimization
https://www.udacity.com/course/responsive-images--ud882
https://developers.google.com/web/fundamentals/media/video
https://youtu.be/j5fYOYrsocs?t=4m49s

51

12. Include a meta viewport tag
Add a valid meta viewport tag to every page on your site.

Why
 🜸 Without a meta viewport tag, web pages will be displayed at

a typical desktop screen width, scaled to fit the viewport —
which is probably not what you want.

Check
 🜸 Check for a valid meta tag in the head element.

Fix
 🜸 The meta viewport tag for your site should look like this:

<meta name=”viewport” content=”width=device-
width,minimum-scale=1.0”>

 🜸 Make sure not to use a maximum-scale value, since that
disables zoom.

Learn
 ⚭ Configure the Viewport

 ⚭ Responsive Meta Tag

 ⚭ Using the Viewport Meta Tag

Maybe

Avoid monolithic JavaScript files
 🜸 Bundling JavaScript can be a good way to reduce the number

of resource requests, but it can also result in huge files that
take time to parse and execute.

Avoid blocking CSS
 🜸 Inline CSS manually or during your build process

 🜸 Separate out CSS not required for initial page load, then
retrieve additional CSS later

More Performance Optimization TIPS

https://developers.google.com/speed/docs/insights/ConfigureViewport
https://css-tricks.com/snippets/html/responsive-meta-tag/
https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag

C H A P T E R 5

52

Links & Resources

53Links & Resources

Perceived Performance
 ӝ Measuring Perceived Performance ARTICLE

 ӝ Stop painting and have a Meaningful Interaction with me!
ARTICLE

 ӝ True Lies Of Optimistic User Interfaces ARTICLE

 ӝ Why Perceived Performance Matters: The Perception Of
Time ARTICLE

 ӝ Leveraging the Performance Metrics that Most Affect
User Experience ARTICLE

 ӝ Time to First Meaningful Paint ARTICLE

 ӝ Measuring Perceived Performance ARTICLE

 ӝ Leveraging the Performance Metrics that Most Affect
User Experience ARTICLE

 ӝ Reactive Web Design: The secret to building web apps that
feel amazing ARTICLE

 ӝ What do people want from a news experience? ARTICLE

 ӝ Designing for the Appearance of Speed ARTICLE

 ӝ How to create the illusion of faster web pages ARTICLE

 ӝ Perceived Performance – Don’t Forget the User ARTICLE

 ӝ How to create the illusion of faster web pages ARTICLE

 ӝ The Illusion of Time ARTICLE

 ӝ Anticipated Travel Experiences ARTICLE

 ӝ Designing Anticipated User Experiences ARTICLE

 ӝ Understanding UX and Hacking Perceived Performance
VIDEO

 ӝ Paul Bakaus: The Illusion of speed - improving the
perceived speed of websites VIDEO

Animation
 ӝ The main rule in Web Animations is to maintain 60fps

ARTICLE

 ӝ Flip your Animations ARTICLE

 ӝ CSS GPU Animation: Doing It Right ARTICLE

 ӝ FLIP: MicroTip - Supercharged VIDEO

 ӝ The Basics of Easing DOC

 ӝ Choosing the right easing DOC

 ӝ Material Design Guidelines - Motion DOC

http://blog.catchpoint.com/2016/10/21/measuring-perceived-performance/
https://medium.com/ben-and-dion/stop-painting-and-have-a-meaningful-interaction-with-me-86ef8eb4f5b3
https://medium.com/ben-and-dion/stop-painting-and-have-a-meaningful-interaction-with-me-86ef8eb4f5b3
https://www.smashingmagazine.com/2016/11/true-lies-of-optimistic-user-interfaces/
https://www.smashingmagazine.com/2015/09/why-performance-matters-the-perception-of-time/
https://www.smashingmagazine.com/2015/09/why-performance-matters-the-perception-of-time/
https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://docs.google.com/document/d/1BR94tJdZLsin5poeet0XoTW60M0SjvOJQttKT-JK8HI/view#
http://blog.catchpoint.com/2016/10/21/measuring-perceived-performance/
https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics#first_paint_and_fist_contentful_paint
https://paul.kinlan.me/what-news-readers-want/
https://medium.com/mobify-design-team/designing-for-the-appearance-of-speed-aaabc7f568c2
https://blog.radware.com/applicationdelivery/wpo/2014/07/eight-tricks-improve-perceived-web-performance/
https://www.keycdn.com/blog/perceived-performance/
https://blog.radware.com/applicationdelivery/wpo/2014/07/eight-tricks-improve-perceived-web-performance/
https://medium.com/swlh/the-illusion-of-time-8f321fa2f191
https://uxdesign.cc/anticipated-travel-experiences-12bcbe265c08
https://uxdesign.cc/designing-anticipated-user-experiences-c419b574a417
https://www.youtube.com/watch?v=VQ-q-7GO6N0
https://www.youtube.com/watch?v=VQ-q-7GO6N0
https://www.youtube.com/watch?v=g3P7Gy_2wOo&t=980s
https://www.youtube.com/watch?v=g3P7Gy_2wOo&t=980s
https://developers.google.com/web/fundamentals/performance/rendering/
https://developers.google.com/web/fundamentals/performance/rendering/
https://aerotwist.com/blog/flip-your-animations/
https://www.smashingmagazine.com/2016/12/gpu-animation-doing-it-right/
https://www.youtube.com/watch?v=Rj1aLTnxLQ4
https://uxdesign.cc/designing-anticipated-user-experiences-c419b574a417
https://developers.google.com/web/fundamentals/design-and-ui/animations/choosing-the-right-easing
https://material.io/guidelines/motion/material-motion.html

54

Optimization
 ӝ Awwwards & Google Mobile Excellence Guidelines GUIDELINES

 ӝ Front End Performance Checklist 2017 ARTICLE

 ӝ The New Perspective on Performance ARTICLE

 ӝ Setting a Performance Budget ARTICLE

 ӝ Performance As Design ARTICLE

 ӝ Design Through the Lens of Performance ARTICLE

 ӝ Designing Great UIs for Progressive Web Apps ARTICLE

 ӝ Creating UX that “Just Feels Right” with Progressive Web
Apps ARTICLE

 ӝ When everything’s important, nothing is! ARTICLE

 ӝ Browser Rendering Optimization Free Curse - Udacity
COURSE

 ӝ AMP + Progressive Web Apps: Start fast, stay engaged -
Google I/O VIDEO

 ӝ Instant Loading: Building offline-first Progressive Web
Apps - Google I/O VIDEO

 ӝ Progressive Performance VIDEO

 ӝ Rendering performance DOC

 ӝ Measure Performance with the RAIL Model DOC

Tools
 ӝ Google Mobile Excellence Guidelines TOOL

 ӝ Webpagetest.org TOOL

 ӝ Lighthouse TOOL

 ӝ TestMySite TOOL

 ӝ PageSpeed Insights TOOL

 ӝ Paint Timing API TOOL

 ӝ Cubic-Bezier TOOL

 ӝ Easing Functions TOOL

 ӝ Performance Budget Builder TOOL

 ӝ Performance Budget Calculator TOOL

 ӝ ImageOptim TOOL

Links & Resources

https://docs.google.com/document/d/1RIz5D8K38u1NuZpPlrHyzrZbZ3klcIxy3x-A2F0O41g/edit#heading=h.wlyocuk08lk0
https://www.smashingmagazine.com/2016/12/front-end-performance-checklist-2017-pdf-pages/
http://www.keynote.com/resources/articles/new-perspective-performance
https://timkadlec.com/2013/01/setting-a-performance-budget/
http://bradfrost.com/blog/post/performance-as-design/
https://www.youtube.com/watch?v=wBcPEZf0hwI
https://medium.com/@owencm/designing-great-uis-for-progressive-web-apps-dd38c1d20f7
https://www.youtube.com/watch?v=mmq-KVeO-uU
https://www.youtube.com/watch?v=mmq-KVeO-uU
https://aerotwist.com/blog/when-everything-is-important-nothing-is/
https://www.udacity.com/course/browser-rendering-optimization--ud860
https://www.udacity.com/course/browser-rendering-optimization--ud860
https://www.youtube.com/watch?v=a5X_Ot-R6lo
https://www.youtube.com/watch?v=a5X_Ot-R6lo
https://www.youtube.com/watch?v=cmGr0RszHc8&t=970s
https://www.youtube.com/watch?v=cmGr0RszHc8&t=970s
https://www.youtube.com/watch?v=4bZvq3nodf4
https://developers.google.com/web/fundamentals/performance/rendering/
https://developers.google.com/web/fundamentals/performance/rail
https://www.awwwards.com/mobile-award/
https://www.webpagetest.org/
https://github.com/GoogleChrome/lighthouse
https://testmysite.withgoogle.com/intl/en-gb
https://developers.google.com/speed/pagespeed/insights/
https://blog.chromium.org/2017/06/chrome-60-beta-paint-timing-api-css.html
http://cubic-bezier.com/#.17,.67,.83,.67
http://easings.net/es
http://bradfrost.com/blog/post/performance-budget-builder/
http://www.performancebudget.io/
https://imageoptim.com/mac

The Need for Speed 55

Thanks!
We would like to thank the following authors for their

collaboration on this eBook:

Ewa Gasperowicz, Developer Programs Engineer at Google
Owen Campbell-Moore, Product Marketing at Google

Addy Osmani, Engineering Manager at Google
Prateek Bhatnagar, UX Engineer at Google

Sam Dutton, Developer Advocate, Chrome at Google
Luciano Borromei UX Engineer at Ingamana

Paul Bakaus, Developer Advocate, AMP at Google

Special thanks to:

Lionel Mora, Product Marketing at Google
Mustafa Kurtuldu, Design Advocate at Google

In collaboration with

https://www.awwwards.com
https://developers.google.com/

	BRAIN FOOD: SPEED MATTERS
	Index
	The Need for Speed
	Mobile Browsing in Context
	How Important is Speed for Users
	Is Speed Fluid
	Outcomes of Speed

	Improve the Perception of Speed
	Perception of Speed
	Interface Response Times
	First Meaningful Paint and Time to Interactive
	Put the User in Active Mode
	Smooth and Optimized Animations
	Animation Optimization

	Designing for Mobile Performance
	Content Strategy
	Image Strategy
	Borrowing Performance Ideas from Native Apps
	Optimize and Prioritize CSS / Scripts

	More Performance Optimization TIPS
	Accelerated Mobile Pages
	Mobile Excellence Guidelines
	Progressive Web Apps

	Links and Resources
	Perceived Performance
	Animation
	Optimization
	Tools

	Collaborations

	New190:

